Главная » Статьи » Математика, алгебра, геометрия | [ Добавить статью ] |
Введение Создание новых и дальнейшее развитие существующих математических теорий связано обычно с уточнением (обобщением) их исходных основных понятий и посылок и основанных на них методов. Математики нередко встречались с трудностями, преодолеть которые им удавалось только после продолжительных поисков. Эти трудности роста математики — трудности её обоснования: они были, есть и будут в дальнейшем. Трудности обоснования математики играют наиболее значительную роль в развитии математики тогда, когда возникает необходимость в коренной переработке основ и методологии всех (или достаточно большого числа) математических теорий. В этих случаях говорят о кризисе основ математики. Впервые кризис основ наук возник в математике в древней Греции, в начале её формирования как научной системы. Второй имел место в конце XVII и в XVIII веке. Третий возник в конце XIX века, он не преодолен и в наше время и оказывает влияние на развитие современной математики. Мы рассмотрим сущность этих кризисов математики, имея в виду преимущественно подтверждение выводов, сделанных ранее о закономерностях развития математики как теории. I. Способы обоснования математики в древней Греции от Пифагора до Евклида. 1. Математика пифагорейцев Математика как теория получила развитие в школе Пифагора (571–479 гг. до н. э.). Главной заслугой пифагорейцев в области науки является существенное развитие математики как по содержанию, так и по форме. По содержанию — открытие новых математических фактов. По форме — построение геометрии и арифметики как теоретических, доказательных наук, изучающих свойства отвлеченных понятий о числах и геометрических формах. Дедуктивное построение геометрии явилось мощным стимулом её дальнейшего роста. Пифагорейцы развили и обосновали планиметрию прямолинейных фигур: учение о параллельных линиях, треугольниках, четырехугольниках, правильных многоугольниках. Получила развитие элементарная теория окружности и круга. Успехи пифагорейцев в стереометрии были значительными. Они занимались изучением свойств шара, открыли построение четырех правильных многоугольников — тетраэдра, куба, октаэдра и додекаэдра (икосаэдр исследовал впоследствии Геэтет). Однако они не смогли обосновать утверждения, относящиеся к объемам тел Как ни велики заслуги пифагорейцев в развитии содержания и систематизации геометрии и арифметики, однако все они не могут сравниться со сделанным ими же открытием несоизмеримых величин. Это открытие явилось поворотным пунктом в истории античной математики. По поводу этого открытия Аристотель говорил, что Пифагор показал, что если бы диагональ квадрата была бы соизмерима с его стороной, то четное равнялось бы нечетному. [pic]Рис. 1 Это замечание Аристотеля ясно показывает, что при доказательстве несоизмеримости диагонали квадрата с его стороной Пифагор использовал метод от противного (рис. 1). Пусть, действительно, диагональ АВ соизмерима со стороной АС квадрата Тогда [pic], где р и q — натуральные числа. Дробь [pic] можно считать несократимой (иначе её можно было бы сократить); значит, р или q будет числом нечетным. Примем АС=1. По теореме Пифагора должно быть: [pic]; Значит [pic], т. е. р2 делится нацело на 2; следовательно и р также делится нацело на Аналогично получаем: q=2q1, где q1 также некоторое натуральное число. Итак, р и q — оба четные числа. Поскольку р или q — число нечетное, выходит, что четное число равно нечетному числу. В конце V века до н. э. Открытие несоизмеримых величин сначала “вызвало удивление” Пифагорейцы знали только положительные целые и дробные числа. Следуя своей философской установке, они, по сути дела, считали, что каждая вещь может быть охарактеризована положительным целым или дробным числом, которое Однако, этот путь столь естественный и простой с современной точки зрения, для пифагорейцев был закрыт. В этом случае надо было построить достаточно строгую арифметическую теорию действительных чисел, что при уровне пифагорейской математики было делом невыполнимым. Поэтому надо было идти по другому пути — по пути определенного пересмотра исходных принципов, например принять, что геометрические объекты являются величинами более общей природы, чем дробные и целые числа, и пытаться строить всю математику не на арифметической, а на геометрической основе. Именно этот второй путь и избрали пифагорейцы, а вслед за ними большинство древнегреческих математиков, вплоть до Архимеда и Аполлония. 2. Проблема бесконечности в древнегреческой философии и математике В древнегреческой философии понятие бесконечности появилось впервые у материалистов милетской школы. Анаксимандр (610–546 гг. до н. э.), переемник Фалеса, учил: материя бесконечна в пространстве и во времени; вселенная бесконечна, число миров бесконечно. Анаксимен (546 г. до н. э. — расцвет деятельности) говорил: вечный круговорот материи — это и есть бесконечность. Понятие бесконечности как математическая категория впервые появляется у Бесконечность для Анаксогора — потенциальная; она существует в двух формах: как бесконечно малое и бесконечно большое. В математике точка зрения Анаксагора нашла благоприятную почву благодаря открытию несоизмеримых величин — величин, которые не могут быть измерены любой, какой угодно малой, общей мерой. Демокрит (около 560–570 гг. до н. э.), по-видимому, изучал так называемые роговидные углы (углы, образуемые дугой окружности и касательной к ней). Поскольку каждый роговидный угол “меньше” любого прямолинейного угла, здесь появляется понятие актуально бесконечно малого. Впоследствии появилось и понятие актуальной бесконечности. Аристотель (384–322 гг. до н. э.) отчетливо различает два вида бесконечности: потенциальную и актуальную. Понятие актуальной бесконечности в древней Греции не получило развития как в философии, так и в математике. Понятие бесконечности подвергалось серьезной критике со стороны Зенона Зенон Элейский выдвинул 45 апорий (антиномий), имея при этом целью развить и лучше обосновать учение Парменида. Из этих антиномий до нашего времени дошло только 9. Вот наиболее характерные из них. Против движения. “Дихотомия”. Движения нет, потому что то, что движется, должно дойти до середины, прежде чем оно дойдет до конца. Но если бы тело дошло до середины, оно должно было бы раньше дойти до середины этой середины и т. д. до бесконечности, а это невозможно. Таким образом движение не может начаться. “Ахиллес и черепаха”. Медленный в беге никогда не будет перегнан быстрым, потому что тот, кто преследует, должен сначала достичь точки, из которой начал убегающий, так что убегающий всегда будет на некотором расстоянии впереди. Заслуга Зенона Элейского в развитии философии и математики состоит в том, что он выявил реальную противоречивость времени, движения и пространства, а значит и бесконечность. В. И. Ленин писал, что Зенон не отрицал чувственную достоверность движения; его интересовал вопрос, как выразить сущность движения в логике понятий. Однако, Зенон последнюю задачу не решил, не решили её и другие ученые древней Греции. 3. Три знаменитых задачи древности В развитии содержания и способов обоснования математики древней Греции выдающуюся роль сыграли три задачи: трисекция угла, удвоение куба Пробуждение особого интереса к этим задачам именно в древней Греции не случайно. При построении математики как дедуктивной системы, базирующейся на геометрическом фундаменте две первые задачи появляются как естественные обобщения более элементарных задач. Задача о квадратуре круга была получена Трисекция угла. Дан (АВС, требуется разделить его на три равные части. [pic]Рис. 2 Удвоение куба. Построить куб, объем которого в два раза больше объема данного куба. Построить квадрат, площадь которого в два раза больше площади данного квадрата. Если сторона данного квадрата а, а искомого х, то х2=2а2; Вполне естественно было перейти от этой задачи на плоскости к соответствующей задачи в пространстве: построить куб, объем которого в два раза больше объема данного куба. Квадратура круга. Построить квадрат, по площади равный данному кругу. Ни одна из указанных задач не разрешима циркулем и линейкой. 4. Преодоление кризиса основ древнегреческой математики Пифагорейцы заложили основы геометрической алгебры. Теэтет и Евклид установили классификацию квадратичных иррациональностей. Евдопс развил общую теорию пропорций — геометрический эквивалент теории положительных вещественных чисел — и разработал метод исчерпывания — зачаточную форму теории пределов, основанную на геометрической базе. Эти теории создали прочный каркас здания древнегреческой математики, фундаментом которого была геометрия; тем самым преодолевались трудности, связанные с фактом существования несоизмеримых величин. Чтобы избежать трудностей в обосновании математики, связанных с парадоксами бесконечности (Зенон, Аристотель), большинство ученых древней Рассмотрение трех знаменитых задач привело древнегреческих ученых к убеждению, что решение геометрической задачи может считаться выполненным строго геометрически лишь при условии использования только (идеальных) циркуля и линейки. Использование механических средств в геометрии не допускается. Только после основополагающих работ пифагорейцев, Теэтета, Евдокса и других математиков, после соглашения о необходимых ограничениях и допустимых средствах построения, Евклид написал “Начала”, посвященные основам и методам древнегреческой математики. В “Началах” Евклида кризис основ древнегреческой математики был преодолен — конечно, для своего времени, и, добавим, преодолен не во всех пунктах и не всегда совершенным образом. II. Способы обоснования математики в XVIII и в первой половине XIX века 1. Особенности способов обоснования математики в конце XVII и в XVIII веке В конце XVII и в XVIII веке все возрастающие запросы практики и других наук побуждали ученых максимально расширять область и методы исследований математики. Понятия бесконечности, движения и функциональной зависимости выдвигаются на первое место, становятся основой новых методов математики. В конце XVII и в XVIII веке в математике и механике были получены классические результаты фундаментального значения. Основным здесь было развитие дифференциального и интегрального исчисления, теории дифференциальных уравнений, вариационного исчисления и аналитической механики. Значительные результаты были получены в алгебре и теории чисел. Вместе с тем, в рассматриваемый период способы обоснования математических теорий — особенно дифференциального исчисления — резко отставали от бурно развивающегося содержания математики. Это отставание проявилось в различных, между собой связанных формах и притом своеобразно в отдельных математических теориях. Общей чертой попыток обоснования математики с конца XVII и планомерно до последней четверти XVIII века было стремление обосновать каждую математическую теорию в полном соответствии с истинами элементарной, Иначе говоря, в обоих случаях принципы и утверждения “низшей” математики метафизически абсолютизировались, рассматривались как незыблемый фундамент каждой математической теории. В конце XVII и особенно в первых трех четвертях XVIII века основные понятия и законы, установленные в одной математической теории часто переносились в новые области исследования, совершенно формально, т. е. без обоснования. Законы алгебры и математического анализа формировались без указания переменных, для которых они справедливы, и без указания границ их применимости. Такая трактовка законов алгебры и математического анализа, естественно, распространялась и на основывающиеся на них алгоритмы. К середине XVIII века описанная трактовка законов математического анализа и алгебры стала настолько общепринятой, что Л. Эйлер счел возможным истолковать её как основной принцип методологии анализа вообще. Случилось это при следующих обстоятельствах. В начале XVIII века между Лейбницем и И. Бернулли возник спор о Лейбниц не согласился с И. Бернулли; он утверждал, что отрицательное число имеет бесчисленное множество логарифмов, причем все они — числа комплексные. Среди других своих аргументов Лейбниц указал, что правило дифференцирования ln x, установленное для х>0, не обязательно должно быть справедливым и для ln(–x). При помощи особой аргументации Л. Эйлер решил спор в пользу Лейбница. Как мы видим, подход математиков в XVIII веке к выяснению границ приложимости методов математики и трактовка её принципов были явно метафизическими. В XVIII веке доказательство теорем математического анализа нередко проводили, опираясь на господствовавшие тогда механические и геометрические представления. Начало широкому использованию механических представлений как базы математического анализа положил Ньютон в своем учении о флюентах и флюксиях. Что же касается указанного использования геометрических представлений, то проще всего выяснить суть дела на следующем примере. В наше время теорема о прохождении непрерывной функции через нулевое значение доказывается в классическом математическом анализе чисто аналитически с использованием понятия бесконечного множества. В XVIII веке если эта теорема и доказывалась, то чаще всего указанием на то, что непрерывная кривая f(x), соединяющая точки А и В, расположенные в плоскости по разные стороны оси ОХ, существует по меньшей мере одна точка с абсциссой х=с, a |
Чтобы скачать материал, пожалуйста, авторизуйтесь или зарегистрируйтесь! Это быстро ! )
Категории
Математика, алгебра, геометрия [1729] |
Книги (Это интересно) [351] |
Видеоуроки [26920] |
География [2660] |
Дополнительное образование [401] |
ЕГЭ/ГИА [266] |
Информатика [1187] |
История / обществознание [4663] |
Для Логопеда [500] |
Материалы для коррекц. классов [400] |
ОБЖ [558] |
Презентации [402] |
Для Психолога [514] |
Физическая культура [529] |
Черчение [121] |
Шаблоны презентаций [466] |
Для Библиотекаря [160] |
Праздники [419] |
Интересные Видеоролики [12] |
Английский язык [791] |
Иностранные языки (прочие) [461] |
Окружающий мир [873] |
Биология и экология [1643] |
Всем учителям [508] |
Для директора и завуча [1042] |
Дошкольное образование [1238] |
Искусство [804] |
Для Классного руководителя [543] |
Начальные классы [718] |
Основы религиозных культур [137] |
Программы и Софт [21] |
Родной язык [505] |
Русский язык и литература [3915] |
Технология [1000] |
Физика [1263] |
Химия [1297] |
Экономика [905] |
Астрономия [444] |
Писатели [113] |
Классный час [527] |
Шаблоны документов [85] |
Другое (Прочее) [412] |