Главная » Статьи » Информатика [ Добавить статью ]

Реферат: Диагностирование асинхронных электродвигателей

Диагностирование асинхронных электродвигателей

 

 

Комплексный метод диагностики асинхронных электродвигателей на основе использования искусственных нейронных сетей

В настоящее время асинхронные электродвигатели являются потребителями более 70% всей электроэнергии в стране. Опыт эксплуатации электродвигателей свидетельствует о большом количестве отказов, происходящих по причине аварийных ситуаций. Аварийность ежегодно составляет 25% и более /1/. Выход из строя электродвигателя наносит большой ущерб. В основном этот ущерб связан с простоем технологического оборудования или порчи продукции вследствие аварии двигателя. Дополнительно к убыткам добавляется снижение электро- и пожаробезопасности, связанное с возможными короткими замыканиями которые могут присутствовать в обмотке статора или ротора поврежденного электродвигателя.

Общепринятые средства защиты не обеспечивают сохранность электродвигателя и снижают вероятность возникновения лишь некоторых из вышеперечисленных случаев. Поэтому возникает потребность диагностики состояния электродвигателя в процессе его работы, т.е. функциональной диагностики. Обнаружение дефектов в работающем электродвигателе на ранней стадии их развития не только предупредит внезапную остановку производства в результате аварии, но и значительно снизит расходы на ремонт электродвигателя и увеличит срок его службы. Кроме этого, в настоящее время достаточно актуально применение адаптивных устройств защиты и диагностики, позволяющих выполнять диагностику электродвигателей независимо от их мощности и конструкции.

Современные системы и методы диагностики электрооборудования можно разделить на две группы.

К первой группе относятся методы тестовой диагностики, требующие формирования искусственных возмущений, воздействующих на изучаемый объект: измерение сопротивления изоляции, токов утечки, внутреннего сопротивления обмоток, тангенса угла диэлектрических потерь обмоток, метод высоковольтного импульса и др.

Вторая группа включает в себя методы оперативной или функциональной диагностики, используемые в первую очередь для электрооборудования, являющегося источником естественных возмущений в процессе работы /2/.

Кроме этого каждая группа делится на две других - это методы, позволяющие выявить неисправность электрооборудования в целом и методы, выявляющие и локализующие конкретную неисправность или дефект в электрооборудовании.

В настоящее время тестовое диагностирование - основной вид выявления дефектов электрооборудования в отечественной энергетике. Оно определило сложившуюся структуру технического обслуживания и ремонта по регламенту /3/. Однако такая диагностика способствует не только предупреждению развития различных дефектов, но и их появлению. Например, при проведении плановых ремонтов электрических машин, после полной сборки двигатель подвергается высоковольтным испытаниям, которые оказывают на изоляцию машины пагубное влияние, вызывая появление в обмотке микродефектов, развивающихся в процессе работы электромашины под влиянием неблагоприятных факторов: некачественной электроэнергии, перегрузок, частых пусков и остановок. С каждым высоковольтным испытанием при планово-предупредительных ремонтах число дефектов увеличивается, что в конечном итоге приводит к аварийному выходу из строя электрического двигателя. Кроме того, каждая разборка и сборка электродвигателя увеличивает эти микродефекты /3/. Например, компанией Baker недавно была разработана многофункциональная система диагностики изоляции электрических машин AWA IV посредством высоковольтного импульсного испытания /4/. И хотя, авторы этой системы утверждают, что AWA IV выполняет неразрушающий тест изоляции, объясняя это своевременной остановкой теста, все равно тест прекращается только после превышения пределов прочности изоляции.

Среди других недостатков тестовой диагностики можно отметить также временную приостановку работы проверяемого оборудования, отсутствие возможности защитного отключения оборудования во время его работы для предотвращения полного выхода его из строя, отсутствие контроля ненормальных режимов работы данного оборудования и т.д.

Для перехода с обслуживания и ремонта по регламенту на ремонт и обслуживание по фактическому состоянию необходима тщательная диагностика электрооборудования, причем, чтобы подготовиться к ремонту, желательно обнаружить все дефекты, влияющие на ресурс, задолго до отказа. По этим причинам необходимо применение методов диагностики не только относящихся к категории функциональных, но и позволяющих выявить дефект конкретной части электрооборудования. К тому же методы функциональной диагностики экономически наиболее предпочтительны, так как не требуют даже временного вывода электрооборудования из эксплуатации.

Для диагностики асинхронных электродвигателей в оперативном режиме в настоящее время используются несколько способов диагностики, среди которых наиболее распространен метод виброакустической диагностики . В этом направлении активно проводятся исследования и разработки научно исследовательскими институтами Военно-промышленного комплекса Санкт-Петербурга, которые были объединены в акционерное общество "Технические Системы и Технологии". Главным недостатком такого метода является необходимость использования специальных виброакустических датчиков и сложность их установки. Специалистами Московского Центра электромагнитной безопасности был разработан метод спектрального анализа потребляемого тока . Достоинство этого метода по сравнению с предыдущим - возможность контроля состояния как механических, так и электрических частей электродвигателей по электрическому параметру, а в частности, по сигналу потребляемого тока, что значительно упрощает установку схемы для диагностики и избавляет от необходимости введения специальных датчиков. Особенно подобные методы распространены за рубежом . Суть данного метода заключается в анализе спектра гармоник тока потребляемого электродвигателем, путем выявления периодически повторяющихся изменений сигнала на графике, соответствующих конкретному виду повреждения электродвигателя. Однако из-за появлений ложных гармоник сигнала при различных помехах электрической сети, с подключенной к ней электродвигателем, возможны неверные результаты диагностики. В дополнение к этому неизвестно каким будет график спектрального анализа тока при нестабильном напряжении в сети.

Современные электротехнические средства, базирующиеся на использовании программируемых микроконтроллеров, позволяют наиболее гибко реализовать защиту и функциональную диагностику электродвигателей, по их электрическим параметрам.

Наиболее удачным методом является использование программно-аппаратного комплекса, который изображен на рис. 1, состоящего из компьютера и цифрового устройства-посредника, производящего необходимые измерения и передаваемого их в компьютер. В качестве измеряемых электрических величин могут быть оперативный ток, потребляемая мощность и т.д. Программа, выполняемая на компьютере, должна, в свою очередь, определенным образом обработать входную информацию и определить наиболее вероятный вид повреждения работающего электродвигателя или сделать заключение об его исправности. Этот метод наиболее эффективен, так как позволяет хранить на компьютере большие базы данных с информацией об отслеживаемой динамике повреждений электродвигателя с последующим прогнозированием выхода его из строя.

 

Рис. 1. Диагностический программно-аппаратный комплекс

Кроме этого, компьютер является более мощным средством обработки информации, чем микроконтроллер, что, в частности, позволяет использовать современные технологии, в том числе и технологии искусственного интеллекта, такие как использование искусственных нейронных сетей, нечеткой логики и экспертных систем.

Известно, что магнитное поле вращающегося ротора работающего асинхронного электродвигателя воздействует на магнитное поле его статорной обмотки, что приводит к периодическим колебаниям электрических величин электродвигателя, таких как потребляемый ток, мощность или напряжение обмотки статора. Период данных колебаний пропорционален, частоте вращения ротора. Таким образом, анализируя форму графика сигнала какой-либо из электрических величин на данном периоде можно обнаружить повреждение в электромеханической части электродвигателя и распознать его вид. Для решения данной проблемы можно использовать много различных подходов. Например, можно построить аппроксимационную функцию по нескольким исходным точкам сигнала, соответствующего конкретному виду повреждения, и в процессе диагностики сравнивать текущие измеряемые значения со значениями данной функции с определенной долей погрешности. Однако аппроксимация сложных нелинейных сигналов приводит к большим погрешностям, которые усугубляются дополнительными помехами электрической сети с подключенным электродвигателем. В настоящее время широкое распространение получило использование искусственных нейронных сетей для построения математических моделей сложных нелинейных процессов, распознавания образов и прогнозирования сигналов.

Нейронная сеть - это набор нейронов, каждый из которых представляет собой модель биологического нейрона, изображенного на рис. 2. Каждый нейрон имеет так называемые дендриты, синапсы и аксоны. Дендриты идут от тела нервной клетки к другим нейронам, где они принимают сигналы в точках соединения, называемых синапсами. Принятые синапсом входные сигналы подводятся к телу нейрона. Здесь они суммируются, причем одни входы стремятся возбудить нейрон, другие - воспрепятствовать его возбуждению. Когда суммарное возбуждение в теле нейрона превышает некоторый порог, нейрон возбуждается, посылая по аксону сигнал другим нейронам. У этой основной функциональной схемы много усложнений и исключений, тем не менее, большинство искусственных нейронных сетей моделируют лишь эти простые свойства .


Чтобы скачать материал, пожалуйста, авторизуйтесь или зарегистрируйтесь! Это быстро ! )