Главная » Статьи » Математика, алгебра, геометрия [ Добавить статью ]

Приближённые методы решения алгебраического уравнения

В данной работе рассматриваются метода приближённого вычисления действительных корней алгебраического или трансцендентного уравнения

f(x)=0
(1.1)

на заданном отрезке [a, b].

Уравнение называется алгебраическим, если заданная функция есть полином n-ой степени:

f(x) = P(x) = a0xn + a1xn- 1 + … + an-1 x + an = 0, a0 ( 0

Требование a0 ( 0 обязательно, так как при невыполнении этого условия данное уравнение будет на порядок ниже.

Всякое уравнение (1.1) называется трансцендентным, если в нём невозможно явным образом найти неизвестное, а можно лишь приближённо.

Однако в число алгебраических уравнений можно также включить те уравнения, которое после некоторых преобразований, можно привести к алгебраическому.

Те методы, которые здесь рассматриваются, применимы, как к алгебраическим уравнениям, так и к трансцендентным
.

Корнем уравнения (1.1) называется такое число (, где f(()=0.

При определении приближённых корней уравнения (1.1) необходимо решить две задачи:

1) отделение корней, т. е. определение достаточно малых промежутков, в каждом из которых заключён один и только один корень уравнения

(простой и кратный);

2) уточнение корней с заданной точностью (верным числом знаков до или после запятой);

Первую задачу можно решить, разбив данный промежуток на достаточно большое количество промежутков, где бы уравнение имело ровно один корень: на концах промежутков имело значения разных знаков. Там где данное условие не выполняется, те промежутки откинуть.

Вторая задача решается непосредственно в методах рассмотренных ниже.

При графическом отделении корней уравнения (1.1) нужно последнее преобразовать к виду:

(1(x)=(2(x)
(2.1)

и построить графики функций y1=(1(x), y2=(2(x).

Действительно, корнями уравнения (1.1)

f(x) = (1(x) - (2(x) = 0

являются абсциссы точек пересечения этих графиков (и только они).

Из всех способов, какими можно уравнение (1.1) преобразовать к виду (2.1) выбираем тот, который обеспечивает наиболее простое построение графиков y1=(1(x) и y2=(2(x). В частности можно взять (2(x) = 0 и тогда придём к построению графика функции (1.1), точки пересечения которого с прямой y2=(2(x)=0, т. е. с осью абсцисс, и есть искомые корни уравнения
(1.0).

Условия, наложенные на функцию f(x) на отрезке [a, b].

Будем предполагать, что функция f(x) непрерывна на отрезке [a, b] (для метода хорд можно потребовать на интервале) и имеет на этом интервале первую и вторую производные, причём обе они знакопостоянны (в частности отличны от нуля). Будем также предполагать, что функция f(x) принимает на концах отрезка значения разного знака. В силу знакопостоянства первой производной функция f(x) строго монотонна, поэтому при сделанных предположениях уравнение (1.1) имеет в точности один корень на интервале

(a, b).

2. Метод дихотомии

Этот метод ещё называется методом вилки.

Нам необходимо найти корень уравнения (1.1) на отрезке [a, b].
Рассмотрим отрезок [x0, x1]: [x0, x1]([a, b]. Пусть мы нашли такие точки х0, х1, что f (х0) f(х1) ( 0, т. е. на отрезке [х0, х1] лежит не менее одного корня уравнения. Найдём середину отрезка х2=(х0+х1)/2 и вычислим f(х2). Из двух половин отрезка выберем ту, для которой выполняется условие f (х2) f(хгран.) ( 0, так как один из корней лежит на этой половине. Затем новый отрезок делим пополам и выберем ту половину, на концах которой функция имеет разные знаки, и т. д. (рис 1.2).

Если требуется найти корень с точностью Е, то про- должаем деление пополам до тех пор, пока длина отрезка не станет меньше 2Е. Тогда середина последнего отрезка даст значение корня с требуемой точностью.

Дихотомия проста и очень надёжна. К простому корню она сходится для любых непрерывных функций в том числе и не дифференцируемых; при этом она устой- чива к ошибкам округления. Скорость сходимости не ве- лика; за одну итерацию точность увеличивается пример- но вдвое, т. е. уточнение трёх цифр требует 10 итераций.
Зато точность ответа гарантируется. рис. 1.2

Приступим к доказательству того, что если непрерывная функция принимает на концах некоторого отрезка [a, b] значения разных знаков, то методом дихотомии однозначно будет найден корень.

Предположим для определённости, что функция f(x) принимает на левом конце отрезка [a, b] отрицательное значение, а на правом – положительное:

f(a) < 0, f(b) > 0.

Возьмём среднюю точку отрезка [a, b], h=(a+b)/2 и вычислим значение в ней функции f(x). Если f(h)=0, то утверждение теоремы доказано: мы нашли такую точку, где функция обращается в нуль. Если f(h)( 0, тогда из отрезков [a, h] и [h, b] выберем один из них тот, где функция на его концах принимает значения разных знаков. Обозначим его [a1, b1]. По построению: f(a1)0. Затем среднюю точку отрезка [a1, b1] точку h1 и проведём тот же алгоритм нахождения другого отрезка [a2, b2] где бы по построению f(a2)0. Будем продолжать этот процесс. В результате он либо оборвётся на некотором шаге n в силу того, что f(hn)=0, либо будет продолжаться неограниченно. В первом случае вопрос о существовании корня уравнения f(x)=0 решён, поэтому рассмотрим второй случай.

Неограниченное продолжение процесса даёт последовательность отрезков [a, b], [a1, b1], [a2, b2],… Эти отрезки вложены друг в друга – каждый последующий отрезок принадлежит всем предыдущим:

an ( an+ 1
< bn+ 1 ( bn (1.2) причём:

f(an) < 0, f(bn) > 0

Длины отрезков с возрастанием номера n стремятся к нулю:

[pic]

Рассмотрим левые концы отрезков. Согласно (1.2) они образуют монотонно убывающую ограниченную последовательность {an}. Такая последовательность имеет предел, который можно обозначить через c1: [pic]

Согласно (1.1) и теореме о переходе к пределу в неравенствах имеем:

c1 ( bn
(2.2)

Теперь рассмотрим правые концы отрезков. Они образуют монотонно не возрастающую ограниченную последовательность {bn}, которая тоже имеет предел. Обозначим его через с2: [pic]. Согласно неравенству (2.1) пределы с1 и с2 удовлетворяют неравенству с1 ( с2. Итак, an ( с1 < с2 ( bn, и следовательно:

с2-с1 ( bn - an=(b-a)/2n.

Таким образом, разность с2-с1 меньше любого наперёд заданного положительного числа. Это означает, что с2-с1=0, т. е.: с1=с2=с

Найденная точка интересна тем, что она является единственной общей точкой для всех отрезков построенной последовательности Используя непрерывность функции f(x), докажем, что она является корнем уравнения f(x)=0.

Мы знаем, что f(an)0, то чтобы её достигнуть достаточно сделать число шагов N, не превышающее log2[(b-a)/(]: N>log2[(b-a)/(].

3. Метод итераций

Этот метод называется ещё методом последовательных приближений.

Пусть нам необходимо найти корень уравнения (1.1) на некотором отрезке [a, b].

Предположим, что уравнение (1.0) можно переписать в виде:

x=((x)
(1.3)

Возьмём произвольное значение x0 из области определения функции
((x) и будет строить последовательность чисел {xn}, определённых с помощью рекуррентной формулы:

xn +1=((xn), n=0, 1, 2, … (2.3)

Последовательность {xn} называется итерационной последовательностью. При её изучении встают два вопроса:

1) Можно ли процесс вычисления чисел xn продолжать неограниченно, т. е. будут ли числа xn принадлежать отрезку [a, b] ?
2) Если итерационный процесс (2.3) бесконечен, то как ведут себя числа xn при n((

Исследование этих вопросов показывает, что при определённых ограничениях на функцию ((x) итерационная последовательность является бесконечной и сходится к корню уравнения (1.3).

[pic], c=((c)

(3.3)

Однако для того, чтобы провести это исследование нам нужно ввести новое понятие.

Говорят, что функция f(x) удовлетворяет на отрезке [a, b] условию Липшица, если существует такая постоянная (, что для любых x1, x2, принадлежащих отрезку [a, b] имеет место неравенство:

| f(x1) - f(x2)| ( (|x1 - x2| (4.3)

Величину ( в этом случае называют постоянной Липшица.

Если функция f(x), удовлетворяет на отрезке [a, b] условию
Липшица, то она непрерывна на нём. Действительно, пусть x0 – произвольная точка отрезка. Рассмотрим приращение функции f(x) в этой точке:

(f=f(x0+(x) – f(x0)

и оценим его с помощью неравенства (4.3)

|(f | ( (|(x|

Таким образом, [pic], что означает непрерывность функции f(x).

Условие Липшица имеет простой геометрический смысл. Возьмём не графике функции y=f(x) две произвольные точки M1 и M2 с координатами (x1, f(x1)) и (x2, f(x2)). Напишем уравнение прямой линии, проходящей через эти точки:

y=f(x1) + k(x-x1)

где k– тангенс угла наклона прямой у оси Оx и определяется формулой:

[pic]

Если функция f(x) удовлетворяет на отрезке [a, b] условию
Липшица, то при произвольном выборе точек M1 и M2 имеем |k|((. Таким образом, с геометрической точки зрения условие Липшица означает ограниченность тангенса угла наклона секущих, проведённых через всевозможные пары точек графика функции y=f(x).

рис 2.3 рис 3.3 геометрическая иллюстрация геометрическая иллюстрация условия Липшица. cвязи условия Липшица с пред-

положением о дифференциру-

емости функции.

Предположим, что функция f(x) имеет на отрезке [a, b] ограниченную производную:
| f ((x)| ( m; тогда она удовлетворяет условию Липшица с постоянной (=m.
Для доказательс- тва этого утверждения воспользуемся формулой конечных приращений Лагранжа:

f(x2) – f(x1) = f ((()(x2-x1) (5.3)

где x1, x2, - произвольные точки отрезка [a, b] (, - некоторая точка отрезка [x1, x2]. Возьмём модуль обеих частей равенства (4.3) и заменим в правой части | f ‘(x)| на m. В результате по- лучим неравенство (4.3) с
(=m. Рис.2.3 даёт геометрическую иллюстрацию установленного свойства.
Согласно формуле Лагранжа (5.3) каждой секущей графика функции y = f(x) мож- но поставить в соответствие параллельную её касательную. Поэтому наибольший тангенс угла наклона касательных, и его можно оценить той же константой m: |k| ( m.

Познакомившись с условием Липшица, перейдём к изучению итерационной последовательности, предполагая, что уравнение имеет корень x=c. Существование этого корня можно установить с помощью качественного предварительного исследования уравнения с применением теоремы о существовании корня непрерывной функции.

Теорема о существовании корня непрерывной функции

Если функция f(x) непрерывна на отрезке [a, b] и принимает на его концах значения разных знаков, то на этом отрезке существует, по крайней мере, один корень уравнения f(x).

Теорема о сходимости итерационной последовательности

Пусть с – корень уравнения (2.3) и пусть функция ((x) удовлетворяет на некотором отрезке [c-(, c+(] ((>0) условию Липшица с постоянной 


Чтобы скачать материал, пожалуйста, авторизуйтесь или зарегистрируйтесь! Это быстро ! )