Главная » Статьи » Математика, алгебра, геометрия [ Добавить статью ]

Механические колебания в дифференциальных уравнениях

Колебаниями  называются процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качания маятника часов, переменный электрический ток и т.д. При колебательном движении маятника изменяется координата центра масс, в случае переменного тока колеблются напряжение и сила тока. Физическая природа колебаний может быть разной, однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями. Рассмотрим механические колебания.

Гармонические колебания.

Гармоническими колебаниями называются колебания, при которых изменяющаяся величина изменяется по закону синуса (косинуса).

Пусть груз весом Р подвешен на вертикальной пружине, длина которой в естественном состоянии равна . Груз слегка оттянут книзу и затем отпущен. Найдем закон движения груза, пренебрегая массой пружины и сопротивлением воздуха.

Решение

Направим ось Ох вниз по вертикальной прямой, проходящей через точку подвеса груза. Начало координат О выберем в положении равновесии груз, то есть в точке, в которой вес груза уравновешивается силой натяжения пружины.

Пусть l означает удлинение пружины  в данный момент, а lст—статическое удлинение, т.е. расстояние от конца нерастянутой пружины до положения равновесия. Тогда l=lст+х, или l-lст=х.

Дифференциальное уравнение получим из второго закона Ньютона: F=ma,   где m=P/g—масса груза а—ускорение движения и F—равнодей-ствующая приложенных к грузу сил. В данном случае равнодействующая слагается из силы натяжения пружины и силы тяжести.

По закону Гука сила натяжения пружины  пропорциональна её удлинению: Fупр=-сl, где с – постоянный коэффициент пропорциональности называемый жесткостью пружины.

Так как в положении равновесия сила равновесия сила натяжения пружины уравновешивается весом тела, то P= сlст. Подставим в дифференциальное уравнение выражение Р и заменим  l-lст через х, получится уравнение в виде:

или, обозначив с/m через k2,

                                                  (1)

Полученное уравнение определяет так называемые свободные колебания груза. Оно называется уравнением гармонического осциллятора. Это линейное дифференциальное уравнение второго порядка с постоянными коэффициентами. Его характеристическое уравнение:

имеет мнимые корни , соответственно этому общее решение

Для выяснения физического смысла решения удобнее привести его к другой форме, введя новые произвольные постоянные. Умножив и разделив на , получим:

Если положить

  

то

                            (2)

График гармонических колебаний имеет вид:

 

Таким образом, груз совершает гармонические колебания около положения равновесия.

Величину А называют амплитудой колебания, а аргумент  — фазой колебания. Значение фазы при t=o т.e.  величина  , называется начальной фазой колебания. Величина  есть частота колебания. Период колебания   и частота k зависят только от жесткости пружины и от массы системы. Так как с = Р/lст = mg/lст, то для периода можно получить также формулу:

Скорость движения груза получается дифференцированием решения по t:

Для определения амплитуды и начальной фазы необходимо задать начальные условия. Пусть, например, в начальный момент t = 0 положение груза x=x0 и скорость u=u0. Тогда  , откуда

,        

Из формул для амплитуды и начальной фазы видно, что в отличие от частоты и периода собственных колебаний они зависят от начального состояния системы. При отсутствии начальной скорости (u0=0) амплитуда А=х0, а начальная фаза a=p/2 и, таким образом,

  или    

Затухающие колебания.

Затухающими колебаниями называются колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшают-ся. Найдем закон движения груза в условиях предыдущей задачи, но с учетом сопротивления воздуха, которое пропорционально скорости движения.

Решение

К силам, действующим на груз, прибавляется здесь сила сопротивления воздуха  (знак минус показывает, что сила R направлена противоположно скорости u). Тогда дифференциальное уравнение движения в проекции на ось Ox имеет вид

или если положить , то

                                                     (3)

Это уравнение также является линейным однородным уравнением второго порядка с постоянными коэффициентами. Его характеристическое уравнение:

 

имеет корни

                                                    (4)

Характер движения целиком определяется этими корнями. Возможны три различных случая. Рассмотрим сначала случай, когда . Это неравенство имеет место, когда сопротивление среды невелико. Если положить , то корни (4) имеют вид . Тогда общее решение можно записать в виде

или, преобразовав, умножая и деля на , получим:

 

положим, что

  ,

тогда

                                                     (5)

График зависимости отклонения от положения равновесия от времени имеет вид:

Если заданы начальные условия:  при t = 0, то можно определить А и a. Для этого находим

и   подставляем  t = 0  в  выражения   для и  получим систему уравнений

Разделелив обе части второго уравнения на соответствующие части первого получим

 

откуда

    или   а     

Так как

 

то

Решение (5) показывает, что имеют место затухающие колебания. Действии-тельно, амплитуда колебания  зависит от времени и является монотонно убывающей функцией, причем  при .

Период затухающих колебаний определяется по формуле

Моменты времени, в которые груз получает максимальное отклонение от начала координат (положения равновесия), образуют арифметическую прогрессию с разностью, равной полупериоду Т/2. Амплитуды затухающих колебаний образуют убывающую геометрическую прогрессию со знаменателем, равным  или . Эта величина называется декрементом затухания и обычно обозначается буквой D. Натуральный логарифм декремента lnD = - пТ/2 называется логарифмическим декрементом затухания.

Частота колебаний в этом случае меньше, нежели в предыдущем (), но, как и там, не зависит от начального положения груза.

Если сопротивление среды велико и , то, положив , получим корни (4) в виде  Так как , то оба корня отрицательны. Общее решение уравнения в этом случае имеет вид

                                              (6)

Отсюда видно, что движение апериодическое и не имеет колебательного характера. Аналогичный характер будет иметь движение и в случае , когда общее решение имеет вид

                                                      (7)

Легко заметить,  что  в обоих  последних  случаях при  имеем .

Если заданы начальные условия  и , то в случае, когда , имеем , а . Решая эту систему относительно  и , получим

,       

и, следовательно

 

В случае же, когда , получаем  и следовательно,

Вынужденные колебания без учета сопротивления среды.

Вынужденными колебаниями называют колебания, вызванные внешней периодической возмущающей силой.

Пусть груз весом Р подвешен на вертикальной пружине, длина которой в ненагруженном состоянии равна . На груз действует периодическая возмущающая сила  где Q и р — постоянные. Найдем закон движения груза, пренебрегая массой пружины и сопротивлением среды.

Решение

Как и для гармонических колебаний, получаем уравнение

Полагая, как и прежде,  и, кроме того,  перепишем уравнение в виде

                                               (8)

Это—неоднородное линейное уравнение второго порядка с постоянными коэффициентами, причем однородным уравнением, соответствующим уравнению (8), является (1). Поэтому ; остается найти х. Если предположить, что , то частное решение х, нужно искать в виде , где М и N — коэффициенты, подлежащие определению. Итак,

Производя вычисления, получаем

     

откуда М=0 и  Полученное таким образом частное решение

                                                     (9)

определяет так называемые вынужденные колебания, созданные возмущаю-щей силой . Вынужденные колебания, имеют тот же период, что и возмущающая сила, совпадают с ней по фазе (т. е. имеют одинаковую начальную фазу) при k>p, либо отличаются на p, если k


Чтобы скачать материал, пожалуйста, авторизуйтесь или зарегистрируйтесь! Это быстро ! )