Главная » Статьи » Математика, алгебра, геометрия [ Добавить статью ]

Абстрактная теория групп

 

Абстрактная теория групп I.Понятие абстрактной группы 1.Понятие алгебраической операции.

Говорят, что на множестве X определена алгебраическая операция (* ), если каждой упорядоченной паре элементов  поставлен в соответствие некоторый элемент  называемый их произведением.

Примеры.

Композиция перемещений на множествах  является алгебраической операцией. Композиция подстановок является алгебраической операцией на множестве  всех подстановок степени n. Алгебраическими операциями будут и обычные операции сложения, вычитания и умножения на множествах Z,R,C соответственно целых, вещественных и комплексных чисел. Операция деления не будет алгебраической операцией на этих множествах, поскольку частное  не определено при . Однако на множествах это будет алгебраическая операция. Сложение векторов является алгебраической операцией на множестве . Векторное произведение будет алгебраической операцией на множестве . Умножение матриц будет алгебраической операцией на множестве всех квадратных матриц данного порядка. 2.Свойства алгебраических операций. 1. Операция (*) называется ассоциативной, если .

Это свойство выполняется во всех приведенных выше примерах, за исключением операций вычитания ( и деления) и операции векторного умножения векторов. Наличие свойства ассоциативности позволяет определить произведение любого конечного множества элементов. Например, если . В частности можно определить степени с натуральным показателем: . При этом имеют место обычные законы: .

2. Операция (*) называется коммутативной, если 

В приведенных выше примерах операция коммутативна в примерах 3 и 4 и не коммутативна в остальных случаях. Отметим, что для коммутативной операции 

3. Элемент  называется нейтральным для алгебраической операции (*) на множестве X, если . В примерах 1-6 нейтральными элементами будут соответственно тождественное перемещение, тождественная перестановка, числа 0 и 1 для сложения и умножения соответственно (для вычитания нейтральный элемент отсутствует !), нулевой вектор, единичная матрица. Для векторного произведения нейтральный элемент отсутствует. Отметим, что нейтральный элемент (если он существует) определен однозначно. В самом деле, если  - нейтральные элементы, то . Наличие нейтрального элемента позволяет определить степень с нулевым показателем: .

4. Допустим, что для операции (*) на X существует нейтральный элемент. Элемент называется обратным для элемента , если . Отметим, что по определению . Все перемещения обратимы также как и все подстановки. Относительно операции сложения все числа обратимы, а относительно умножения обратимы все числа, кроме нуля. Обратимые матрицы - это в точности все матрицы с ненулевым определителем. Если элемент x обратим, то определены степени с отрицательным показателем: . Наконец, отметим, что если x и y обратимы, то элемент  также обратим и  . (Сначала мы одеваем рубашку, а потом куртку; раздеваемся же в обратном порядке!).

Определение (абстрактной) группы.

Пусть на множестве G определена алгебраическая операция (*). (G ,*) называется группой, если

Операция (*) ассоциативна на G. Для этой операции существует нейтральный элемент e (единица группы). Каждый элемент из G обратим.

Примеры групп.

Любая группа преобразований. (Z, +), (R, +), (C, +).  Матричные группы: - невырожденные квадратные матрицы порядка n, ортогональные матрицы того же порядка, ортогональные матрицы с определителем 1. 3. Простейшие свойства групп. В любой группе выполняется закон сокращения: (левый закон сокращения; аналогично, имеет место и правый закон). Доказательство. Домножим равенство слева на  и воспользуемся свойством ассоциативности:  . Признак нейтрального элемента: 

Доказательство Применим к равенству  закон сокращения.

Признак обратного элемента:  Доказательство Применим закон сокращения к равенству . Единственность обратного элемента. Обратный элемент определен однозначно. Следует из п.3. Существование обратной операции. Для любых двух элементов произвольной группы G уравнение  имеет и притом единственное решение. Доказательство Непосредственно проверяется, что (левое частное элементов ) является решением указанного уравнения. Единственность вытекает из закона сокращения, примененного к равенству . Аналогично устанавливается существование и единственность правого частного. 4. Изоморфизм групп.

Определение.

Отображение  двух групп G и K называется изоморфизмом , если

1.Отображение j взаимно однозначно. 2.Отображение j сохраняет операцию: .

Поскольку отображение обратное к j также является изоморфизмом, введенное понятие симметрично относительно групп G и K , которые называются изоморфными.

Примеры.

1.Группы поворотов плоскости  и вокруг точек  и изоморфны между собой. Аналогично, изоморфными будут и группы, состоящие из поворотов пространства относительно любых двух осей.

2.Группа диэдра  и соответствующая пространственная группа  изоморфны.

Группа тетраэдра T изоморфна группе  состоящей из четных подстановок четвертой степени. Для построения изоморфизма достаточно занумеровать вершины тетраэдра цифрами 1,2,3,4 и заметить, что каждый поворот, совмещающий тетраэдр с собой некоторым образом переставляет его вершины и, следовательно, задает некоторую подстановку множества{1,2, 3, 4} Повороты вокруг оси, проходящей через некоторую вершину (например 1), оставляет символ 1 на месте и циклически переставляет символы 1, 2, 3. Все такие перестановки - четные. Поворот вокруг оси, соединяющей середины ребер (например, 12 и 34 ) переставляет символы 1 и 2 , а также 3 и 4. Такие перестановки также являются четными. Формула определяет взаимно однозначное соответствие между множеством R вещественных чисел и множеством  положительных чисел. При этом. Это означает, что  является изоморфизмом.

Замечание. В абстрактной алгебре изоморфные группы принято считать одинаковыми. По существу это означает, что игнорируются индивидуальные свойства элементов группы и происхождение алгебраической операции.

5. Понятие подгруппы.

Непустое подмножество  называется подгруппой, если само является группой. Более подробно это означает, что  и .

Признак подгруппы.

Непустое подмножество  будет подгруппой тогда и только тогда, когда .

Доказательство.

В одну сторону это утверждение очевидно. Пусть теперь - любой элемент. Возьмем  в признаке подгруппы. Тогда получим . Теперь возьмем . Тогда получим .

Примеры подгрупп.

Для групп преобразований новое и старое понятие подгруппы равносильны между собой. - подгруппа четных подстановок.   и т.д. Пусть G - любая группа и  - любой фиксированный элемент. Рассмотрим множество всевозможных степеней этого элемента. Поскольку , рассматриваемое множество является подгруппой. Она называется циклической подгруппой с образующим элементом g . Пусть  любая подгруппа Рассмотрим множество - централизатор подгруппы H в группе G. Из определения вытекает, что если , то , то есть . Теперь ясно, что если , то и  и значит централизатор является подгруппой. Если группа G коммутативна, то  . Если G=H, то централизатор состоит из тех элементов, которые перестановочны со всеми элементами группы; в этом случае он называется центром группы G и обозначается Z(G).

Замечание об аддитивной форме записи группы.

Иногда, особенно когда операция в группе коммутативна, она обозначается (+) и называется сложением. В этом случае нейтральный элемент называется нулем и удовлетворяет условию: g+0=g. Обратный элемент в этом случае называется противоположным и обозначается (-g). Степени элемента g имеют вид g+g+...+g , называются кратными элемента g и обозначаются ng.

6. Реализация абстрактной группы как группы преобразований.

Существует несколько способов связать с данной абстрактной группой некоторую группу преобразований. В дальнейшем, если не оговорено противное, знак алгебраической операции в абстрактной группе будет опускаться.

Пусть  некоторая подгруппа.

А) Для каждого  определим отображение (левый сдвиг на элемент h) формулой .

Теорема 1

 Множество L(H,G)= является группой преобразований множества G. Соответствие:  является изоморфизмом групп H и L(H,G).

Доказательство.

Надо проверить, что отображение  взаимно однозначно для всякого . Если , то  по закону сокращения. Значит  инъективно. Если любой элемент, то  и  так что  к тому же и сюръективно. Обозначим через · операцию композиции в группе Sym(G) взаимно однозначных отображений . Надо проверить, что  и . Пусть  любой элемент. Имеем: ; и значит, . Пусть . Надо проверить, что l взаимно однозначно и сохраняет операцию. По построению l сюръективно. Инъективность вытекает из закона правого сокращения: . Сохранение операции фактически уже было установлено выше:  .

Следствие.

Любая абстрактная группа изоморфна группе преобразований некоторого множества (Достаточно взять G=H и рассмотреть левые сдвиги).

Для случая конечных групп получается теорема Кэли:

Любая группа из n элементов изоморфна подгруппе группы подстановок степени n.

Для каждого  определим отображение (правый сдвиг на элемент h) формулой  .

Теорема B.

. Множество  является группой преобразований множества G. Соответствие является изоморфизмом групп H и R(H,G).

Доказательство теоремы B вполне аналогично доказательству теоремы A. Отметим только, что . Именно поэтому в пункте 3 теоремы В появляется не , а .

С) Для каждого  определим (сопряжение или трансформация элементом h ) формулой .

Теорема С.

Каждое отображение  является изоморфизмом группы G с собой (автоморфизмом группы G). Множество  является группой преобразований множества G. Отображение  сюръективно и сохраняет операцию.

Доказательство.

Поскольку , отображение  взаимно однозначно как композиция двух отображений такого типа. Имеем:  и потому  сохраняет операцию. Надо проверить, что  и . Оба равенства проверяются без труда. Сюръективность отображения  имеет место по определению. Сохранение операции уже было проверено в пункте 2.

Замечание об инъективности отображения q .

В общем случае отображение q не является инъективным. Например, если группа H коммутативна, все преобразования  будут тождественными и группа тривиальна. Равенство означает, что  или (1) В связи с этим удобно ввести следующее определение: множество  называется централизатором подгруппы . Легко проверить, что централизатор является подгруппой H. Равенство (1) означает, что . Отсюда вытекает, что если централизатор подгруппы H в G тривиален, отображение q является изоморфизмом.

7. Смежные классы; классы сопряженных элементов.

Пусть, как и выше,  некоторая подгруппа. Реализуем H как группу L(H,G) левых сдвигов на группе G. Орбита  называется левым смежным классом группы G по подгруппе H. Аналогично, рассматривая правые сдвиги, приходим к правым смежным классам .Заметим, что  стабилизатор St(g, L(H,G)) (как и St(g, R(H,G)) ) тривиален поскольку состоит из таких элементов , что hg=g. Поэтому, если группа H конечна, то все левые и все правые смежные классы состоят из одинакового числа элементов, равного .

Орбиты группы  называются классами сопряженных элементов группы G относительно подгруппы H и обозначаются  Если G=H, говорят просто о классах сопряженных элементов группы G. Классы сопряженных элементов могут состоять из разного числа элементов . Это число равно , где Z(H,g) подгруппа H , состоящая из всех элементов h перестановочных с g.

Пример.

Пусть - группа подстановок степени 3. Занумеруем ее элементы: =(1,2,3); =(1,3,2); =(2,1,3); =(2,3,1); =(3,1,2); =(3,2,1). Пусть . Легко проверить, что левые смежные классы суть:

.

Правые смежные классы:

.

Все эти классы состоят из 2 элементов.

Классы сопряженных элементов G относительно подгруппы H:

.

В то же время,

.

Теорема Лагранжа.

Пусть H подгруппа конечной группы G. Тогда порядок H является делителем порядка G.

Доказательство.

По свойству орбит G представляется в виде объединения непересекающихся смежных классов: . Поскольку все смежные классы состоят из одинакового числа элементов, , откуда и вытекает теорема.

Замечание. Число s левых (или правых) смежных классов называется индексом подгруппы .

Следствие.

Две конечные подгруппы группы G порядки которых взаимно просты пересекаются только по нейтральному элементу.

В самом деле, если  эти подгруппы, то  их общая подгруппа и по теореме Лагранжа  - общий делитель порядков H и K то есть 1.

8. Нормальные подгруппы. Факторгруппы.

Пусть любая подгруппа и -любой элемент. Тогда также является подгруппой G притом изоморфной H, поскольку отображение сопряжения  является изоморфизмом. Подгруппа  называется сопряженной по отношению к подгруппе H.

Определение.

Подгруппа H называется инвариантной или нормальной в группе G, если все сопряженные подгруппы совпадают с ней самой: .

Равенство можно записать в виде Hg = gH и таким образом, подгруппа инвариантна в том и только в том случае, когда левые и правые смежные классы по этой подгруппе совпадают.

Примеры.

В коммутативной группе все подгруппы нормальны, так как отображение сопряжения в такой группе тождественно. В любой группе G нормальными будут , во первых, тривиальная подгруппа  и, во вторых, вся группа G. Если других нормальных подгрупп нет, то G называется простой. В рассмотренной выше группе  подгруппа не является нормальной так как левые и правые смежные классы не совпадают. Сопряженными с H будут подгруппы  и . Если - любая подгруппа, то ее централизатор Z = Z(H,G) - нормальная подгруппа в G , так как для всех ее элементов z . В частности, центр Z(G) любой группы G -нормальная подгруппа. Подгруппа H индекса 2 нормальна. В самом деле, имеем 2 смежных класса : H и Hg = G-H = gH.

Теорема (свойство смежных классов по нормальной подгруппе).

Если подгруппа H нормальна в G, то множество всевозможных произведений элементов из двух каких либо смежных классов по этой подгруппе снова будет одним из смежных классов, то есть .

Доказательство.

Очевидно, что для любой подгруппы H HH=H.Но тогда

Таким образом, в случае нормальной подгруппы H определена алгебраическая операция на множестве смежных классов. Эта операция ассоциативна поскольку происходит из ассоциативного умножения в группе G. Нейтральным элементом для этой операции является смежный класс . Поскольку , всякий смежный класс имеет обратный. Все это означает, что относительно этой операции множество всех (левых или правых) смежных классов по нормальной подгруппе является группой. Она называется факторгруппой группы G по H и обозначается G/H. Ее порядок равен индексу подгруппы H в G.

9 Гомоморфизм.

Гомоморфизм групп - это естественное обобщение понятия изоморфизма.

Определение.

Отображение групп называется гомоморфизмом, если оно сохраняет алгебраическую операцию, то есть .

Таким образом, обобщение состоит в том, что вместо взаимно однозначных отображений, которые участвуют в определении изоморфизма, здесь допускаются любые отображения.

Примеры.

Разумеется, всякий изоморфизм является гомоморфизмом. Тривиальное отображение  является гомоморфизмом. Если - любая подгруппа, то отображение вложения  будет инъективным гомоморфизмом. Пусть - нормальная подгруппа. Отображение  группы G на факторгруппу G/H будет гомоморфизмом поскольку . Этот сюръективный гомоморфизм называется естественным. По теореме С предыдущего раздела отображение сопряжения сохраняет операцию и, следовательно является гомоморфизмом. Отображение , которое каждому перемещению  n- мерного пространства ставит в соответствие ортогональный оператор (см. лекцию №3) является гомоморфизмом поскольку по теореме 4 той же лекции .

Теорема (свойства гомоморфизма)

Пусть - гомоморфизм групп,  и - подгруппы. Тогда:

- подгруппа. -подгруппа, причем нормальная, если таковой была .

Доказательство.

 и по признаку нейтрального элемента . Теперь имеем: . Пусть p = a (h) , q = a (k) . Тогда  и . По признаку подгруппы получаем 2. Пусть  то есть элементы p = a (h) , q = a (k) входят в . Тогда  то есть . Пусть теперь подгруппа нормальна и - любой элемент.   и потому .

Определение.

Нормальная подгруппа  называется ядром гомоморфизма .Образ этого гомоморфизма обозначается .

Теорема.

Гомоморфизм a инъективен тогда и только тогда, когда 

Доказательство.

Поскольку , указанное условие необходимо. С другой стороны, если , то  и если ядро тривиально,  и отображение инъективно.

Понятие гомоморфизма тесно связано с понятием факторгруппы.

Теорема о гомоморфизме.

Любой гомоморфизм  можно представить как композицию естественного (сюръективного) гомоморфизма , изоморфизма  и (инъективного) гомоморфизма  (вложения подгруппы в группу): .

Доказательство.

Гомоморфизмы p и i описаны выше (см. примеры) Построим изоморфизм j . Пусть . Элементами факторгруппы  являются смежные классы Hg . Все элементы  имеют одинаковые образы при отображении a : . Поэтому формула  определяет однозначное отображение . Проверим сохранение операции  .Поскольку отображение j очевидно сюръективно, остается проверить его инъективность. Если , то  и потому . Следовательно,  и по предыдущей теореме j инъективно.

Пусть  - любой элемент. Имеем :  . Следовательно, .

10 Циклические группы.

Пусть G произвольная группа и - любой ее элемент. Если некоторая подгруппа  содержит g , то она содержит и все степени . С другой стороны, множество очевидно является подгруппой G .

Определение.

Подгруппа Z(g) называется циклической подгруппой G с образующим элементом g. Если G = Z(g) , то и вся группа G называется циклической.

Таким образом, циклическая подгруппа с образующим элементом g является наименьшей подгруппой G, содержащей элемент g.

Примеры

Группа Z целых чисел с операцией сложения является циклической группой с образующим элементом 1. Группа  поворотов плоскости на углы кратные 2 p ¤ n является циклической с образующим элементом - поворотом на угол 2 p ¤ n. Здесь n = 1, 2, ...

Теорема о структуре циклических групп.

Всякая бесконечная циклическая группа изоморфна Z. Циклическая группа порядка n изоморфна Z / nZ .

Доказательство.

Пусть G = Z(g) - циклическая группа. По определению, отображение - сюръективно. По свойству степеней  и потому j - гомоморфизм. По теореме о гомоморфизме . H = Kerj Ì Z. Если H - тривиальная подгруппа, то . Если H нетривиальна, то она содержит положительные числа. Пусть n - наименьшее положительное число входящее в H. Тогда nZÌ H. Предположим, что в H есть и другие элементы то есть целые числа не делящееся на n нацело и k одно из них. Разделим k на n с остатком: k = qn +r , где 0 < r < n. Тогда r = k - qn Î H , что противоречит выбору n. Следовательно, nZ = H и теорема доказана.

Отметим, что » Z / nZ .

Замечание.

В процессе доказательства было установлено, что каждая подгруппа группы Z имеет вид nZ , где n = 0 ,1 , 2 ,...

Определение.

Порядком элемента  называется порядок соответствующей циклической подгруппы Z( g ) .

Таким образом, если порядок g бесконечен, то все степени  - различные элементы группы G. Если же этот порядок равен n, то элементы  различны и исчерпывают все элементы из Z( g ), а N кратно n . Из теоремы Лагранжа вытекает, что порядок элемента является делителем порядка группы. Отсюда следует, что для всякого элемента g конечной группы G порядка n имеет место равенство .

Следствие.

Если G - группа простого порядка p, то - циклическая группа.

В самом деле, пусть  - любой элемент отличный от нейтрального. Тогда его порядок больше 1 и является делителем p, следовательно он равен p. Но в таком случае G = Z( g )» .

Теорема о подгруппах конечной циклической группы.

Пусть G - циклическая группа порядка n и m - некоторый делитель n. Существует и притом только одна подгруппа HÌ G порядка m. Эта подгруппа циклична.

Доказательство.

По предыдущей теореме G» Z / nZ. Естественный гомоморфизм  устанавливает взаимно однозначное соответствие между подгруппами HÌ G и теми подгруппами KÌ Z , которые содержат Kerp = nZ . Но, как отмечалось выше, всякая подгруппа K группы Z имеет вид kZ Если kZÉ nZ , то k - делитель n и p (k) - образующая циклической группы H порядка m = n /k. Отсюда и следует утверждение теоремы.

Верна и обратная теорема: если конечная группа G порядка n обладает тем свойством, что для всякого делителя m числа n существует и притом ровно одна подгруппа H порядка m, то G - циклическая группа.

Доказательство.

Будем говорить, что конечная группа G порядка N обладает свойством (Z), если для всякого делителя m числа N существует и притом только одна подгруппа HÌ G порядка m. Нам надо доказать, что всякая группа, обладающая свойством (Z) циклическая. Установим прежде всего некоторые свойства таких групп.

Лемма.

Если G обладает свойством (Z), то

Любая подгруппа G нормальна. Если x и y два элемента такой группы и их порядки взаимно просты, то xy = yx. Если H подгруппа порядка m такой группы G порядка N и числа m и N/m взаимно просты, то H обладает свойством (Z).

Доказательство леммы.

1. Пусть HÌ G . Для любого  подгруппа  имеет тот же порядок, что и H. По свойству (Z)  то есть подгруппа H нормальна.

2. Пусть порядок x равен p, а порядок y равен q. По пункту 1) подгруппы Z(x) и Z(y) нормальны. Значит, Z(x)y = yZ(x) и xZ(y) = Z(y)x и потому для некоторых a и b . Следовательно, . Но, поскольку порядки подгрупп Z(x) и Z(y) взаимно просты, то . Следовательно,  и потому xy = yx.

3. Используя свойство (Z) , выберем в G подгруппу K порядка N/m. По 1) эта подгруппа нормальна, а поскольку порядки H и K взаимно просты, эти подгруппы пересекаются лишь по нейтральному элементу. Кроме того по 2) элементы этих подгрупп перестановочны между собой. Всевозможные произведения hk =kh, где hÎ H, kÎ K попарно различны, так как =e поскольку это единственный общий элемент этих подгрупп. Количество таких произведений равно m N/m =  и, следовательно, они исчерпывают все элементы G. Сюръективное отображение  является гомоморфизмом  с ядром K. Пусть теперь число s является делителем m. Выберем в G подгруппу S порядка s. Поскольку s и N/m взаимно просты,  и потому  - подгруппа порядка s. Если бы подгрупп порядка s в H было несколько, то поскольку все они были бы и подгруппами G условие (Z) для G было бы нарушено. Тем самым мы проверили выполнение условия (S) для подгруппы H.

Доказательство теоремы.

Пусть  - разложение числа N в произведение простых чисел. Проведем индукцию по k. Пусть сначала k = 1, то есть . Выберем в G элемент x максимального порядка . Пусть y любой другой элемент этой группы. Его порядок равен , где u £ s. Группы  и  имеют одинаковые порядки и по свойству (Z) они совпадают. Поэтому  и мы доказали, что x - образующий элемент циклической группы G. Пусть теорема уже доказана для всех меньших значений k. Представим N в виде произведения двух взаимно простых множителей N = pq (например, ) . Пусть H и K подгруппы G порядка p и q. Использую 3) и предположение индукции , мы можем считать, что H = Z(x), K = Z(y), причем xy = yx . Элемент xy имеет порядок pq = N и, следовательно, является образующим элементом циклической группы G.

11. Некоторые теоремы о подгруппах конечных групп.

Теорема Коши.

Если порядок конечной группы делится на простое число p, то в ней имеется элемент порядка p.

Прежде чем переходить к доказательству этой теоремы, отметим, что если g¹ e и , где p - простое число, то порядок g равен p. В самом деле, если m - порядок g, то p делится на m, откуда m=1 или m=p. Первое из этих равенств невозможно по условиям выбора g.

Индукция , с помощью которой проводится доказательство теоремы, основана на следующей лемме

Лемма.

Если некоторая факторгруппа G/H конечной группы G имеет элемент порядка p, то тем же свойством обладает и сама группа G.

Доказательство леммы.

Пусть  - элемент порядка p. Обозначим через m порядок элемента . Тогда  и значит m делится на p. Но тогда  - элемент порядка p.

Доказательство теоремы Коши.

Зафиксируем простое число p и будем проводить индукцию по порядку n группы G. Если n=p, то G» Z/pZ и теорема верна. Пусть теорема уже доказана для всех групп порядка меньше n и , причем n делится на p.

 

Рассмотрим последовательно несколько случаев

G содержит собственную ( то есть не совпадающую со всей группой и нетривиальную) подгруппу H , порядок которой делится на p. В этом случае порядок H меньше n и по предположению индукции имеется элемент порядка p. Поскольку  в этом случае теорема доказана. G содержит собственную нормальную подгруппу. Если ее порядок делится на p, то по 1 теорема доказана. В противном случае на p делится порядок факторгруппы G/H и теорема в этом случае следует из доказанной выше леммы. Если G - коммутативна, то возьмем любой . Если порядок g делится на p, то теорема доказана по 1, поскольку Z(g)Ì G. Если это не так, то , поскольку в коммутативной группе все подгруппы нормальны, теорема доказана по 2. Остается рассмотреть случай, когда порядки всех собственных подгрупп G не делятся на p, группа G проста ( то есть не имеет собственных нормальных подгрупп ) и не коммутативна. Покажем, что этого быть не может. Поскольку центр группы G является нормальной подгруппой и не может совпадать со всей группой, он тривиален. Поэтому G можно рассматривать как группу преобразований сопряжения на множестве G. Рассмотрим разбиение множества G на классы сопряженных элементов: . Здесь отдельно выделен класс  и классы неединичных элементов. Стабилизатор St(g) элемента g¹ e представляет собой подгруппу группы G, не совпадающую со всей группой. В самом деле, если St(g) = G, то g коммутирует со всеми элементами из G и потому gÎ Z(g) = {e}. Значит, порядок этой подгруппы не делится на p, а потому  делится на p: . Но тогда - не делится на p, что не соответствует условию.

Замечание.

Если число p не является простым, то теорема неверна даже для коммутативных групп. Например, группа  порядка 4 коммутативна, но не является циклической, а потому не имеет элементов порядка 4.

Теорема о подгруппах коммутативной группы.

Для конечной коммутативной группы G справедлива теорема обратная к теореме Лагранжа : если m - делитель порядка группы, то в G имеется подгруппа порядка m.

Доказательство.

Проведем индукцию по порядку n группы G. Для n = 2 теорема очевидна. Пусть для всех коммутативных групп порядка < n теорема доказана. Пусть простое p делит m . По теореме Коши в G имеется циклическая подгруппа S порядка p. Так как G коммутативна, S - нормальная подгруппа. В факторгруппе G/S используя предположение индукции выберем подгруппу K порядка m/p .Если  естественный гомоморфизм, то  - подгруппа G порядка m .

Замечание.

Для некоммутативных групп данная теорема неверна. Так, например, в группе  четных перестановок степени 4, которая имеет порядок 12, нет подгрупп шестого порядка.


Чтобы скачать материал, пожалуйста, авторизуйтесь или зарегистрируйтесь! Это быстро ! )